
http://www.pinpub.com 1FoxTalk Extended Article: April 1998

A Case for Derivative Data
Peter de Valença

Often, the data stored in an application isn’t in a format that
can be easily used by end-users in querying and reporting.
In these cases, a second set of data in denormalized form
is created. In this article, Peter describes a mechanism for
determining when the original data and the derived data
go out of sync.

WHEN a data model is complex, it’s often difficult
to provide access to that data to end-users in a
form that they can easily understand. A solution

to this problem is to derive a second set of data that’s
structured in a more comprehensible form. However, just
as a man with one watch knows what time it is, but a man
with two watches is never sure, keeping multiple data
sets in sync poses certain problems.

Before I continue, I’ll define a couple of terms. In
searching for an expression that identifies data in a
dataset that can be derived from other data in the same
dataset at any time, I decided to introduce the expressions
“derivative data” and “raw data.” (For purposes of this
article, a dataset is a set of databases that are logically all
part of one datamodel. Most probably, but not necessarily,
they’re also physically gathered in the same spot.)

Raw data are the original data in a dataset. Derivative
data (or “derived data”) are in the same dataset and have
been derived from the raw data. Moreover, ideally they
shouldn’t be out of sync with the raw data at any time.

Typically, the derivation is done with a procedure
that takes as input a lot of data from several databases,
performs one or more complex algorithms, and adds the
resulting data to a database with a simpler physical
structure. Reasons for doing so include: 1) performance,
where the use of derivative data might speed things
up, and 2) complexity, where some complex data
transformations are needed at more spots in the
application. Use of derivative data can simplify coding.
A typical reason for not doing so is the frequent changing
of original data. If the original data is changed too often,
the performance could drop significantly, due to the
need to refresh the derivative data.

The out-of-sync issue might pose practical problems.
Immediate refresh (or re-derivation, or synchronization)
of the derivative data whenever raw data changes is
difficult to realize and will slow things down
considerably. The alternative (and convenient) solution
is to refresh the derivative data at crucial moments only.

From a database-management perspective,
derivative data are redundant data. Codd’s model of
data normalization encourages us to banish redundant
data. However, in a practical sense, they’re not redundant,
for they enable us to increase performance and
simplify coding.

This article introduces a method for dealing with
derivative data—this method will be referred to as the
Derivative Data Method.

Requirements
Management of the derivative data in the dataset requires
an administrative component and an operational
component. The administrative component should know
all the answers to all the questions that the operational
component needs answered in order to perform actions.

The administration is best done by a dedicated
module, which I’ll name DERIVATIVE. In this article, it’s
referred to as the Derivative Module. Although it’s
tempting to also put the operational component in this
module, it’s better to have the elements of the operational
component scattered over several other modules. (Read
on for the argument.)

Let’s presume that it’s not the task of the Derivative
Module to decide whether or not it’s an appropriate and
crucial moment to operate. Rather, the Derivative Module
is invoked at appropriate places in other modules. If
invoked, it’s supposed to be a crucial moment to
conditionally start an operation.

Items for operation are:

• Add certain derivative data if it’s not yet present.

• Refresh certain derivative data if it’s out of sync.

FoxTalk
Solutions for Microsoft® FoxPro® and Visual FoxPro® Developers

This is an exclusive supplement for
FoxTalk subscribers. For more

information about FoxTalk, call us at
1-800-788-1900 or visit our Web

site at www.pinpub.com/foxtalk.

Extended Ar ticle

http://www.pinpub.com2 FoxTalk Extended Article: April 1998

• Remove certain derivative data. (This might seem a
weird operation, but it will prove to be a useful one.)

As a consequence of these demands, items for
administration are:

• An ID for the derivative data.

• A Subset name to indicate a subset of that
derivative data.

• Name and location of the database that contains the
derivative data.

• The name and location of the “hookprogram” that
will perform operations with regard to this
derivative data.

• A date and time that mark when the derivative data
was created or refreshed.

• A flag, date, and time that mark whether and since
when the derivative data is out of sync.

So, the parameters of the Derivative Module should
enable it to perform the following actions and tasks:

• Operation: Tell the module to derive certain data if
it’s not yet present.

• Operation: Tell the module to refresh certain
derivative data if it’s out of sync.

• Operation: Tell the module to remove certain or all
derivative data if it’s present.

• Administration: Set the out-of-sync flag, date,
and time.

The hookprogram
The hookprogram is part of the operational component
and specializes in certain derivative data. Typically, its
functionality is described in the functional design of
another module. This makes it more logical to put the
hookprogram into that module, rather than in the
Derivative Module.

The decision to permanently store the derived data—
for improved performance or any other reason—makes it
necessary to use the Derivative Module, but the code that
creates the derivative data may remain in the “original”
module. However, in order to be compatible with the
Derivative Module, the hookprogram (which is in the
original module) will have to conform to certain
standards, as laid down by the Derivative Module.

Here are some requirements for the hookprogram:

• It can presume that no module other than the
Derivative Module—not even a program in the same

module—will invoke the hookprogram. (However, it
should check for this anyway; see the next item.)

• The hookprogram should check for the correctness of
the needed predeclared variables (which are declared
in the Derivative Module and are discussed later).

• The flag checks aren’t done by the hookprogram.
Whenever the hookprogram is invoked, it should do
its own job—the flags have been checked for in the
Derivative Module.

• The hookprogram should return a result code of type
Numerical, reflecting the state of the operation.

The hookmodule
I’ll use the term “hookmodule” to identify the module
that contains the hookprogram. Let’s presume that each
hookmodule is a separate app.

As there’s no way of invoking a program in another
app in a direct way, I need an alternative mechanism.
(The intuitive “DO <hookprogram> IN <hookmodule>
WITH <parameters>” won’t do the job in the case of
apps.) I need to call the app with a parameter that’s
understood by the app’s main program. The parameter
tells the main program that I want to contact a
hookprogram that resides in that hookmodule. I could
use the keyword “dvd” as a default, but let’s not get too
restrictive. There’s plenty of room in the administrative
department (a database, of course), so I’ll also administer
the keyword.

Predeclared variables
Other information is needed by the hookmodule’s main
program and the hookprogram. It might be tempting to
pass that information with the help of additional
parameters, and under normal circumstances this is good
practice. However, it’s likely that the hookmodule already
has additional parameters with specific names and
specific meanings and the alternative use of these
parameters could be confusing. Therefore, it’s better to let
the Derivative Module put the information in variables
with names that are understood by the hookmodule’s
main program and hookprogram.

• I need a variable that contains the name of the
hookprogram; it’s used by the hookmodule’s
main program.

• Another variable should contain a keyword that
reflects the type of action. This variable is used by the
hookprogram only.

• I can use an array for the additional information that
the hookprogram needs to perform the action. The
array’s size and the datatypes of the elements can
vary among hookprograms.

http://www.pinpub.com 3FoxTalk Extended Article: April 1998

• I need a variable that contains a result code. It’s
initialized by the Derivative Module, changed to
other codes by the hookmodule and hookprogram,
and interpreted by the Derivative Module on return.
Thus, the risk of failure is minimized.

Messages
While some idiosyncratic errors are best handled in the
hookprogram, other errors can be dealt with by the
Derivative Module, thus simplifying the coding of a
hookprogram. That’s why the result code that’s returned
to the Derivative Module should be numeric, rather
than logical.

The result code
A public variable should be set to a number at various
places, thus enabling the Derivative Module to interpret
the status of its call:

• 0—It should be set to 0 in the hookprogram as soon
as it’s successfully done its job.

• 1—The Derivative Module should set it to 1
prior to invoking the hookmodule. A hookmodule
that can’t handle the keyword “dvd” also won’t
change the value, thus indicating that it was an
inappropriate call.

• 2—It should be set to 2 in the hookmodule prior to
invoking the hookprogram, thus indicating that the
hookprogram doesn’t exist.

• 3—It should be set to 3 at the top of the hookprogram,
thus indicating a premature ending of the
hookprogram due to an unexpected error.

• 4—It should be set to 4 in the hookprogram if the
action keyword isn’t yet supported by the
hookprogram.

• 5—It should be set to 5 in the hookprogram if it
thinks that the array is invalid in some way.

A negative number indicates failure. However,
display of a message by the Derivative Module is
inappropriate. Otherwise, a specific message will be
displayed by the Derivative Module, unless it’s 0.

The coding essentials
Here I declare four variables PUBLIC during initialization
of the application:

* 1 - Name of hookprogram.
* 2 - Keyword for hookprogram.
* 3 - Additional info for hookprogram.
* 4 - Result code, or Status code.
PUBLIC QCdvdHook
PUBLIC QCdvdAction
PUBLIC ARRAY QAdvd[1]
PUBLIC QNdvdResult

*
QCdvdHook = '?'
QCdvdAction = '?'
QNdvdResult = 0

The character “Q” is my indicator for public
variables. Also, to further distinguish public variables
from private variables, I write the first two characters in
upper case. The character sequence “dvd” stands for
“derivative data.”

The administrative component of the Derivative
Module will declare these variables prior to calling the
module that’s supposed to contain the hookprogram:

dimension QAdvd[2]
QCdvdHook = 'dvd_insp'
QCdvdAction = 'refresh'
QAdvd[1] = '1997'
QAdvd[2] = '09'
QNdvdResult = 1

The next step—also done in the Derivative Module—
is an activation of the hookprogram. Presume that the
hookmodule’s name is INSP_R.APP:

=insp_r('dvd') && This one ...
do insp_r with 'dvd' && ... or this one.

Note that I’m not interested in the returned value.
Its datatype is uncertain (for example, in the case of a
misplaced call) and not needed, for the QNdvdResult
variable is at our disposal for analysis.

The hookmodule’s main program should have
something like the following code:

parameter pAction
private cAction
*
cAction = lower(left(default('pAction', ''), 4))
*
do case
case cAction == 'dvd'
 *
 QNdvdResult = 2 && That is.. Hookprogram
 && doesn't exist.
 =&QCdvdHook.() && Invoke the hookprogram.
 RETURN && Return whatever
 && datatype you like.
endcase

The default() function is a UDF that will create a default
if no parameter was passed. (See the sidebar “Set a
Default.”)

Note that the Derivative Module can display an
appropriate message, based on the value of QNdvdResult,
if the hookprogram couldn’t be invoked.

The hookprogram also should check for the
correctness of the needed predeclared variables:

private cAction, Lok
*
QNdvdResult = 3 && That is..
 && Busy in hookprogram.
Lok = .F.
cAction = lower(left(QCdvdAction, 4))
*
do case
case not inlist(cAction, "add", "refr")
 *

http://www.pinpub.com4 FoxTalk Extended Article: April 1998

 QNdvdResult = 4 && That is.. keyword
 && not yet supported.
 RETURN
 *
case alen(QAdvd) # 2 && Rudimentary check.
 *
 QNdvdResult = 5 && That is.. Invalid array.
 RETURN
 *
case not msg(1860) && warning message?!
 QNdvdResult = -1
 RETURN
 *
case cAction = 'add' && add
 ...
case cAction = 'refr' && refresh
 ...
endcase
*
if Lok
 QNdvdResult = 0 && That is.. Action
 && successfully finished.
else
endif
*
RETURN

Most messages can be dealt with entirely by the
Derivative Module, thus simplifying the coding of a
hookprogram. A normal termination results in the return
of the result code 0.

It must be simple to set the out-of-sync flag for certain
derivative data. Suppose the ID is “insp” and you want to
make all subsets out-of-sync (oos). You’d need only three
parameters:

if <some condition>
 *
 * parms: action, id, subset
 *
 =derivate("make_oos", "insp", "*")
endif

The asterisk “*” serves as a wildcard character, thus
indicating all subsets.

It must be almost as simple to conditionally refresh
(or synchronize) the derivative data only at the time it’s
needed, rather than whenever it gets out of sync. So, the
following code can be expected in another module,
preceding the code that relies on the derivative data:

* Check whether the derivate data is out of sync.
* If it is, synchronize it for this period.
*
if derivate('is_oos?', 'insp', "199709")
 *
 if not derivate('sync', 'insp', ;
 "199709", "1997", "09")
 *
 <do cleanup>
 RETURN && .. for it is still out of sync.
 endif
endif

In this example, the ID’s subset names reflect periods.
Moreover, when told to synchronize, the hookprogram
seems to need the year and month. They’re passed as
additional parameters and will be put into the QAdvd[]
array by the Derivative Module prior to the call of the
hookprogram.

So let’s code . . .
And that’s exactly what I’ve done. I’ve succeeded, but it

was more difficult than I expected it to be. It took me
several days to get things straight, and functionality
changed several times. (I had to rewrite more than a few
portions of this text to reflect those changes.) But now it’s
up and running, and the feeling is good.

You should try the accompanying code and example
in this month’s Subscriber Downloads at www.pinpub.
com/foxtalk.

Conclusion
You might not be impressed by the idea at all at first
glance, but think about it a little longer . . . Derivative
data (that is, redundant data) is what Codd tried to put a
spell on, and while most of us have saved “derivative
data” for later use in harsh situations, very few of us have
created an administrative system that tells us whether this
data is out of sync and needs a refresh. I wonder what
Codd would have to say about the Derivative Data
Method. ▲

04DEVAL.ZIP at www.pinpub.com/foxtalk

Peter de Valença is a freelance software developer who works on

projects for large companies and has specialized in FoxPro for the past

five years. He has a Ph.D. in social psychology from the University of

Amsterdam. Peter would like to solicit your feedback about this article.

pvalenca@digiface.nl (preferred), pvalenca@compuserve.com.

Set a Default
The following code will conditionally set a default for

a parameter:

FUNCTION default
 parameter pVar, pDefault
 if type(pVar) == type('pDefault')
 RETURN &pVar
 else
 RETURN pDefault
 endif

An example:

* x.prg
* sample PRG
parameters pWhat, pFnd, pFrom
private cWhat, nFnd, dFrom
cWhat = default('pWhat', 'disp')
nFnd = default('pFnd', 0)
dFrom = default('pFrom', {1/1/80})
? cWhat
? nFnd
? dFrom

do x with "XX", , {1/1/91}
 "XX"
0
{1/1/1991}

do x with , 34
 "disp"
34
{1/1/1980}

http://www.pinpub.com

